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Abstract

Obtaining high-quality and up-to-date labeled data can be

difficult in many real-world machine learning applications,

especially for Internet classification tasks like review spam

detection, which changes at a very brisk pace. For some

problems, there may exist multiple perspectives, so called

views, of each data sample. For example, in text classifica-

tion, the typical view contains a large number of raw con-

tent features such as term frequency, while a second view

may contain a small but highly-informative number of do-

main specific features. We thus propose a novel two-view

transductive SVM that takes advantage of both the abun-

dant amount of unlabeled data and their multiple represen-

tations to improve the performance of classifiers. The idea

is fairly simple: train a classifier on each of the two views of

both labeled and unlabeled data, and impose a global con-

straint that each classifier assigns the same class label to

each labeled and unlabeled data. We applied our two-view

transductive SVM to the WebKB course dataset, and a real-

life review spam classification dataset. Experimental results

show that our proposed approach performs up to 5% better

than a single view learning algorithm, especially when the

amount of labeled data is small. The other advantage of

our two-view approach is its significantly improved stability,

which is especially useful for noisy real world data.

1 Introduction.

Text classification is an active research problem in data
mining and machine learning [21]. The classical text
classifier is created by building a machine learning
model, e.g. support vector machines (SVM) [15, 27],
trained from a collection of labeled data. Unfortunately,
in practical problems like review spam classification, up-
to-date labeled data are very costly to obtain, while
unlabeled data are always abundant. We attempt to
overcome this limitation with a semi-supervised learn-
ing approach, which aims to improve the performance of
a classifier trained with limited number of labeled data
by utilizing unlabeled data. Among the various semi-
supervised learning algorithms, the Transductive Sup-
port Vector Machine (TSVM) has drawn a lot of atten-
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tion since it was first introduced by Vapnik [27, 16, 7].
An intuitive interpretation for the success of transduc-
tive SVM is the so-called “cluster assumption” [4]. That
is, instead of traversing through high density regions of
the data, the decision boundary should always be placed
in low density regions. One can implement this assump-
tion by exploiting the information of unlabeled data into
the SVM optimization procedure.

To improve the performance of the existing trans-
ductive SVM, we adopted a multi-view learning ap-
proach. In multi-view learning, a classifier is created
for each representation or view of the same data, with
each classifier optimized to maximize the overall con-
sensus of their predictions. Where two view represen-
tations of the same problem are available, a two-view
learning approach typically yields equal or better re-
sults than those obtained from either view. In fact,
our proposed two-view semi-supervised learning algo-
rithm, called two-view transductive SVM, extends the
supervised two-view learning framework of Farquhar et
al. [9] to take advantage of the large amount of unlabeled
data available. We evaluated the proposed new clas-
sification technique on both toy and real-life datasets
against single-view semi-supervised and two-view super-
vised approaches.

Our two-view tranductive SVM is practically moti-
vated by the problem of product review filtering, which
separates valid product reviews from non-opinionated
postings in online forums. This task is in fact a prepro-
cessing step for product review mining, which aims to
extract and summarize people’s opinions from product
reviews [8]. In particular, we defined the two views for
product reviews as (1) a classical text representation
based on the word vector model, and (2) a high-level
representation based on an analysis of each review sen-
tence. Encouraging experimental results justified the
utility of our method on the product review filtration
task together with other general web document classifi-
cation problem.

The rest of this paper is organized as follows. Sec-
tion 2 introduces related work of transductive SVM,
multi-view learning and product review filtering. Sec-
tion 3 presents our two-view transductive SVM algo-
rithm. Section 4 gives our experimental results and dis-
cussions, and section 5 concludes this paper.



2 Related Work.

We first review existing work on transductive SVM and
two-view supervised learning algorithms, followed by a
brief survey on product review filtering.

2.1 Transductive SVM. The transductive SVM
can be viewed as a standard SVM with an extra
regularization term defined over the set of unlabeled
data [32]. Suppose a training set contains l labeled ex-
amples {(xi, yi)}l

i=1, yi = ±1, and u unlabeled exam-
ples {xi}l+u

i=l+1, xi ∈ Rn. The decision function of SVM
has the following form:

(2.1) fθ(x) = w · Φ(x) + b,

where θ = (w, b) are the parameters of the model, and
Φ(·) is the feature map. The transductive SVM solves
the following optimization problem
(2.2)

min
1
2
‖w‖2 + C

l∑

i=1

L(yifθ(xi)) + C∗
l+u∑

i=l+1

L(|fθ(xi)|)

where L(·) = max(0, 1− ·) is the classical hinge loss for
labeled examples as illustrated in Figure 1(a), L(| · |) =
max(0, 1−| · |) is the symmetric hinge loss for unlabeled
examples as illustrated in Figure 1(b), C and C∗ are
adjustable parameters.

Equation (2.2) is hard to optimize since the objec-
tive function is non-convex. To solve this problem, a
suite of algorithms have been proposed [3] - [5], [7], [24].
Amongst them, we are particularly interested in the
work of Collobert et al. [7], who employed an approxi-
mate optimization technique known as the concave con-
vex procedure (CCCP) [29]. CCCP decomposes a non-
convex function into convex and concave parts. In each
iteration, the concave part is replaced by its tangential
approximation. Then, the sum of the convex part and
the tangential approximation is minimized. In CCCP
transductive SVM [7], the loss function applied to un-
labeled data is called “ramp loss” (Figure 1(c)), which
can be expressed as the sum of a hinge loss function
(Figure 1(a)) and a concave loss function (Figure 1(d)).
Specifically, the ramp loss function Rs(·) has the form

Rs(·) = min(1− s, max(0, 1− ·)) = L(·) + Ls(·)
where L is the hinge loss, Ls is the concave loss with
the form Ls(·) = −max(0, s − ·), and s is a predefined
parameter such that −1 < s ≤ 0.

According to Collobert et al. [7], training a trans-
ductive SVM with the CCCP method is equivalent to
training a SVM using the hinge loss for labeled data, and
the ramp loss for unlabeled data. For a binary classifica-
tion problem, each unlabeled example is accounted for
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(a) Hinge loss
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(b) Symmetric hinge loss
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(c) Ramp loss
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(d) Concave loss

Figure 1: Four kinds of loss function. For ramp loss and
concave loss, the parameter s is set to -0.3.

twice, each time assuming the role of one class, that is,
{(xi, yi = 1)}l+u

i=l+1, {(xi, yi = −1) : xi = xi−u}l+2u
i=l+u+1.

The corresponding optimization problem of CCCP
transductive SVM is given by

min
1
2
‖w‖2 + C

l∑

i=1

L(yifθ(xi)) + C∗
l+2u∑

i=l+1

Rs(yifθ(xi))

2.2 Multi-view Learning. Multi-view learning uti-
lizes the agreement among learners trained on differ-
ent representations of the same problem to improve the
overall classification result. The basic idea of using two
views with unlabeled data was first proposed by Sa [20].
Blum et al. [2] devised the co-training algorithm that
bootstraps a set of classifiers defined on two views by
training both with high confidence labeled data. Sind-
hwani et al. [23] defined a co-regularization approach
that learns a multi-view classifier from partially labeled
data using a view consensus based regularization term.
In particular, we focus on the work of Farquhar et al. [9].
They observed that when two views of the same prob-
lem are available, applying the Kernel Canonical Cor-
relation Analysis (KCCA) [10] to the two feature space
can improve the performance of the classifier. They also
proposed a supervised learning algorithm named SVM-
2K, which imposes a similarity constraint between two
distinct SVMs each trained from one view of the data.



The constraint they introduced in the optimization is

|fA
θ (xA

i )− fB
θ (xB

i )| ≤ ηi + ε

where f
A/B
θ (·) are the SVM decision functions belong-

ing to each of the two views denoted by superscripts A
and B respectively, ηi is a variable that imposes consen-
sus between the two views, and ε is a slack variable for
allowing some examples to violate the constraint. Com-
bining this constraint with the standard SVM objective
functions for each view yields a multi-view learning al-
gorithm, which was shown to perform better than single
view approaches on the image classification task.

2.3 Product Review Filtering. Both classification
and regression based methods have been applied to rate
product reviews. Liu et al. [18] detected low-quality
product reviews (spam review) with a binary classi-
fier trained from manually annotated data. Some re-
searchers [13] [17] [31] used regression models to pre-
dict the utility scores of product reviews crawled from
the Amazon website. A multitude of semantic fea-
tures, term statistics, and metadata of review sentence
were extracted to build the regression model. Since the
ground-truth of review quality is difficult to obtain, hu-
mans were asked to vote on each review’s helpfulness,
which are subsequently used to train the ranking mod-
els. Jindal et al. [13] solved the problem in a differ-
ent way: they first tried to recognize duplicate reviews,
then treated duplicate reviews as spam reviews to train
the model. Their approach was based on the assump-
tion that a large number of duplicate reviews constitute
many types of spam reviews if not all. But as Pang et
al. [19] stated, the assumption that duplicate reviews
constitute some sort of manipulation attempt is weak-
ened by the fact that duplicate reviews in Amazon can
be largely attributed to Amazon’s own cross-posting
mechanism. We thus propose that in the absence of
user ratings (ground truth), a semi-supervised learning
method like our two-view transductive SVM is a better
way to tackle the problem.

3 Two-view Transductive SVM.

3.1 Motivation. We extend the two-view supervised
learning algorithm proposed by Farquhar et al. [9] by in-
corporating unlabeled data, making it a two-view semi-
supervised learning approach. The basic idea is to con-
struct two transductive SVM classifiers from both la-
beled and unlabeled data based on different representa-
tions of the original problem, and train these classifiers
simultaneously by requiring that they always retain a
maximum consensus on their predictions. By enforcing
different classifiers trained from different views to agree
on both labeled and unlabeled training data, the struc-

ture learnt from each view can reinforce one another.
Once trained, a voting or weighting scheme can be used
to combine the output from each classifier to classify
test samples.
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(a) Supervised SVM (view 1)
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(b) Supervised SVM (view 2)
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(c) CCCP TSVM (view 1)
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(d) CCCP TSVM (view 2)
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(e) Two-view TSVM (view 1)
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(f) Two-view TSVM (view 2)

Figure 2: Decision boundaries (denoted by the solid
line) obtained by the supervised SVM, CCCP TSVM,
and Two-view TSVM. The only two labeled examples
are represented by a big cross and circle. The remaining
small points are unlabeled. A Gaussian kernel and
linear kernel is used for views 1 and 2, respectively.

To illustrate the advantage of two view transductive
learning, consider a toy dataset in which samples from
two classes appear as two moons in one view and two
lines in another, as shown in Figure 2 (cross and cir-
cle are used to represent the two classes, respectively).
Given only two labeled examples (denoted by a bold
cross and circle), the solid lines in Figure 2(a) and Fig-
ure 2(b) turn out to be the maximum margin hyper-
plane of the two training instances. They are clearly
suboptimal with respect to the underlying distribution
of unlabeled data (denoted by the small crosses and



circles). Taking unlabeled data into consideration, a
transductive SVM shifted the decision boundary away
from dense regions, but still fails to yield a good re-
sult in either view (Figure 2(c) and Figure 2(d)). On
the contrary, once a consensus between the two views
is imposed on both classifiers, a much better decision
boundary is obtained in each view. This is shown in
Figure 2(e) and Figure 2(f), in which the solid decision
boundary clearly separates the two classes of data.

3.2 Derivation of the Optimization Prob-
lem. Consider a multi-view semi-supervised learn-
ing problem containing a set of l labeled examples{(

xA
i , xB

i

)
, yi

}l

i=1
, yi = ±1, and a set of u unlabeled

examples
{
xA

i , xB
i

}l+u

i=l+1
, x

A/B
i ∈ Rn. Superscripts A

and B denote the two views, respectively. For each
view, we aim to find a decision function fθ(·) of the
form fθ(x) = w · Φ(x) + b, where θ = (w, b) are the
parameters of the model, and Φ(·) is the feature map.

According to Collobert et al. [7], for each view, the
CCCP transductive SVM has the following objective
function

J(θA/B) =
1
2
‖wA/B‖2 + CA/B

l∑

i=1

ξ
A/B
i +

C∗A/B
l+2u∑

i=l+1

ξ
A/B
i +

l+2u∑

i=l+1

ρ
A/B
i yif

A/B
θ (xA/B

i )

where ρ
A/B
i is related to the derivative of the concave

loss function mentioned in Section 2.2, written as
(3.3)

ρ
A/B
i =

{
C∗A/B if yif

A/B
θ (xA/B

i ) < s and i ≥ l + 1
0 otherwise

where s is the parameter of the loss function.
Following Farquhar et al. [9], we add a regularizer

that penalizes the objective functions of each view if
it deviates from the consensus, and minimize them si-
multaneously. This leads to the following minimization
problem of two-view transductive SVM

min
θA/B ,ξA/B ,η

J(θA) + J(θB) + D

l+2u∑

i=1

ηi(3.4a)

s.t. yif
A/B
θ (xA/B

i ) ≥ 1− ξ
A/B
i(3.4b)

ξ
A/B
i ≥ 0(3.4c) ∣∣fA

θ (xA
i )− fB

θ (xB
i )

∣∣ ≤ ηi + ε(3.4d)
ηi ≥ 0 ∀1 ≤ i ≤ l + 2u(3.4e)

1
u

l+u∑

i=l+1

f
A/B
θ (xA/B

i ) =
1
l

l∑

i=1

yi(3.4f)

where constraint (3.4b) and (3.4c) are the standard
SVM constraints, constraint (3.4d) and (3.4e) impose
the consensus between the two views, and constraint
(3.4f) is a balancing constraint that aims to prevent
an extremely skewed classification result caused by
assigning all unlabeled examples to only one class. It
has been previously used in [4], [7].

By introducing the Lagrange multipliers α
A/B
0 ,

αA/B , β+/−, γA/B and δ for constraint (3.4f), (3.4b),
(3.4d), (3.4c), and (3.4e) respectively, and applying the
usual Lagrange multiplier technique, the minimization
problem (3.4) is equivalent to the following problem

min
α̃A/B ,β

1
2

l+2u∑

i,j=0

(yiα̃
A
i + βi)(yjα̃

A
j + βj)KA

ij+

1
2

l+2u∑

i,j=0

(yiα̃
B
i − βi)(yjα̃

B
i − βj)KB

ij−

l+2u∑

i=0

giα̃
A
i −

l+2u∑

i=0

giα̃
B
i − ε

l+2u∑

i=0

β2
i

(3.5a)

s.t. 0 ≤ α̃
A/B
i ≤ CA/B ∀1 ≤ i ≤ l(3.5b)

−ρ
A/B
i ≤ α̃

A/B
i ≤ C∗A/B − ρ

A/B
i ∀l + 1 ≤ i ≤ l + 2u

(3.5c)

−D ≤ βi ≤ D ∀1 ≤ i ≤ l + 2u(3.5d)
l+2u∑

i=0

(yiα̃
A
i + βi) = 0(3.5e)

l+2u∑

i=0

(yiα̃
B
i − βi) = 0(3.5f)

where α̃
A/B
i = α

A/B
i − ρ

A/B
i , βi = β+

i − β−i , y0 = 1,
β0 = 0, ρ

A/B
i is defined by equation (3.3), gi is given by

gi =





1
l

l∑

j=1

yj if i = 0

1 otherwise

Kij is the kernel matrix of the form

Kij = Φ(xi) · Φ(xj)

Φ(x0) is implicitly defined by

Φ(x0) =
1
u

l+u∑

i=l+1

Φ(xi)

To solve the minimization problem (3.5), we em-
ploy the augmented Lagrangian technique as Farquhar



et al. [9] did. Augmented Lagrangian is a method for
solving constrained optimization problems. It reformu-
lates a constrained optimization problem into an un-
constrained one by adding Lagrange multipliers and an
extra penalty term for each constraint to the original
objective function. The augmented Lagrangian func-
tion corresponding to the minimization problem

min
x

f(x)(3.6a)

s.t. ci(x) = 0, i = 1, . . . , n(3.6b)

can be written as

(3.7) min
x

f(x)−
n∑

i=1

λici(x) +
µ

2

n∑

i=1

c2
i (x)

where the first two terms correspond to the Lagrangian
and the last term is the penalty for violating the
constraint. The minimization problem (3.7) can be
solved in an iterative way. At each iteration, λ is fixed
to some estimate of the optimal Lagrange multiplier
and the penalty parameter µ is set to some positive
value, then one can perform minimization operation
with respect to x. In subsequent iterations, λ and µ are
updated; and the process is repeated until some stop
criteria is reached.

Let us denote the equality constraints (3.5e) and
(3.5f) as h1 and h2, and introduce corresponding La-
grange multipliers λ1 and λ2, we can then rewrite the
minimization problem (3.5) into the augmented La-
grangian form as follows

min
α̃A/B ,β

1
2

l+2u∑

i,j=0

(yiα̃
A
i + βi)(yjα̃

A
j + βj)KA

ij+

1
2

l+2u∑

i,j=0

(yiα̃
B
i − βi)(yjα̃

B
i − βj)KB

ij−

l+2u∑

i=0

giα̃
A
i −

l+2u∑

i=0

giα̃
B
i − ε

l+2u∑

i=0

β2
i−

2∑

i=1

λihi +
µ

2

2∑

i=1

‖hi‖2

(3.8a)

s.t. 0 ≤ α̃
A/B
i ≤ CA/B ∀1 ≤ i ≤ l(3.8b)

−ρ
A/B
i ≤ α̃

A/B
i ≤ C∗A/B − ρ

A/B
i ∀l + 1 ≤ i ≤ l + 2u

(3.8c)

−D ≤ βi ≤ D ∀1 ≤ i ≤ l + 2u(3.8d)

where µ is the penalty parameter.
Once the minimization problem (3.8) is solved with

the augmented Lagrangian method, the decision func-
tions corresponding to the two views can be calculated

as follows

(3.9a) fA
θ (xA) =

l+2u∑

i=0

(yiα̃
A
i + βi)KA(xA

i , xA) + bA

(3.9b) fB
θ (xB) =

l+2u∑

i=0

(yiα̃
B
i − βi)KB(xB

i , xB) + bB

A hybrid decision function can be written as a linear
combination of the two classifiers as

(3.10) f(x) = σfA
θ (xA) + (1− σ)fB

θ (xB)

with 0 ≤ σ ≤ 1.
Algorithm 1 summarizes the two-view transductive

SVM algorithm. The convergence of the CCCP proce-
dure is described in [7]. A detailed convergence analysis
of the Lagrange multiplier iteration, which corresponds
to the outer loop of Algorithm 1 can be found in [1].
In our experiments, we observed that Algorithm 1 al-
ways converges as long as the parameters are selected
appropriately.

Algorithm 1 Two-view Transductive SVM
Require: Labeled and unlabeled data of two views.

Initialize α̃A/B , ρA/B , β, λ and µ.
repeat

Solve the following sub-problem.
repeat

Solve the minimization problem (3.8) with fixed
λk and µk.
Compute f

A(t+1)
θ and f

B(t+1)
θ by equation (3.9)

with the solution of the minimization prob-
lem (3.8).
Compute ρA(t+1) and ρB(t+1) by equation (3.3)
with the value of f

A(t+1)
θ and f

B(t+1)
θ .

Update the lower and upper bounds of α̃A(t+1)

and α̃B(t+1) by equation (3.8b) and (3.8c).
until ρA(t+1) = ρA(t) and ρB(t+1) = ρB(t)

Update the Lagrange multiplier λ by

λk+1 = λk + µkhk

Update the penalty parameter µ by

µk+1 = φµk

until ‖hk‖ ≤ ε
return The decision functions corresponding to two
views calculated by equation (3.9).



4 Experimental Results.

In this section, we evaluate the classification perfor-
mance of our two-view transductive SVM on two real-
life datasets: the well-known WebKB course dataset and
our own product review dataset.

4.1 Product Review Dataset. Our product review
dataset was downloaded from two popular online Chi-
nese cell-phone forums1. Redundant punctuations and
stop words were removed and reviews containing less
than four characters were eliminated, since they may
not hold enough information for a review mining sys-
tem. We then manually labeled 1000 true reviews and
1000 spam reviews according to the following criteria.
A product review is regarded as useful or non-spam if
(1) it contains a declarative sentence (all questions are
regarded as spam reviews), and (2) it expresses opin-
ions on a product or product feature. Opinions include
the reviewer’s personal sentiment (positive or negative)
towards a product or product feature, and/or the pros
and cons analysis of a product or product feature.

To illustrate the idea, consider the following cell-
phone forum snippet.

Example 4.1. This cell phone works better than any
I’ve ever had. I really like it.

Example 4.2. I will buy this phone to try it out.

Example 4.3. How is the battery life of this cell
phone?

Based on our criteria, Example 4.1 is a useful product
review with positive opinion on the product, whereas
Example 4.2 and 4.3 are spam reviews since they fail to
comment on the product.

We treat the product review filtering task as a
binary classification problem. To train the classifier,
we define two sets of features: one based on the
review content (which we call the lexical view) and
the other based on the characteristics of the review
sentences (called formal view). For the lexical view,
since there are no space separators between Chinese
words, raw reviews were preprocessed by a Chinese
lexical analyzer — ICTCLAS2. ICTCLAS performs
word segmentation and part-of-speech tagging. Each
sentence was converted to a word vector using the
standard TF-IDF (term frequency-inverse document
frequency) representation. For the formal view, five
types of features are enumerated as below.

1http://www.club.mobile.163.com and http://www.3533.com
2http://www.ictclas.org

1. F1: Proportion of opinion-bearing phrases in the
review sentence. Opinion-bearing phrase refers
to adjectives and other terms that are used to
express subjective opinions. A review that contains
many opinion-bearing phrases is likely to contain
comments on the product. We manually crafted
a list of dictionary phrases to detect the opinion-
bearing phrase in review sentences.

2. F2: Proportion of questioning patterns in the
review sentence. Prior work has found that the
linguistic style in which reviews are written is
a good indicator of spam/non-spam reviews [31].
We extracted the number of questioning patterns
from a review. The questioning pattern dictionary
includes common Chinese question structures.

3. F3: Proportion of numerical digits in the review
sentence. Empirical observations suggested that
sentences containing many numerical digits tend to
talk about product pricing or refers to a spammers
contact number rather than product review. This
distinction is useful for detecting spam reviews.

4. F4: Percentage of brand mentions in the review
sentence. A high percentage of brand mentions in
the sentence suggests that the review is a comment
on brand only, or an advertisement, both of which
are treated as spam reviews.

5. F5: Length of review sentence. This feature is
chosen since advertisements (which are regarded
as spam reviews) are typically longer than true
reviews. For example, the average length of true
reviews in our dataset is 21 characters, whereas
that of advertisements is 56.

Figure 3 shows each of the five features along with
some sample dictionary terms and the dictionary size
information.

��������
�	
�

���
�����������	������
���������	�
����

���������	���
�
���

�� ��������������� ��������� �������������
� ������	�������	 ������������

������
���

���������	��
�������

 ��
� �!
�������� �
	!���	������ �!
	��
�� �!
����� �!
�������

"���������

�"��#���� $�%�& �$�'
���'���

�(��)����
���� �*	�	�	�������� �#	�	�������
�+	,������� �-�.��������

��������

����/����
�
	�������!

0	�����
���	������.����	��1��'	���0
���'����
�0
������2����
������������������������
��
�����!����'����������'�����	���

3

Figure 3: The five extracted features and their sample
dictionary terms where applicable.



To evaluate the discriminative power of our pro-
posed high level features against the text corpus fea-
tures, we trained a supervised SVM to classify prod-
uct reviews based only on the lexical or formal view.
Ten fold cross validation test accuracy was 89.90% and
85.29% for the lexical and formal views, respectively.
This indicates that each of the two views contain suffi-
cient information to train a standalone classifier.

We benchmarked our two-view transductive SVM
(Two-view TSVM) against the supervised SVM (trained
using a few labeled examples from one view), the
supervised two-view SVM — SVM-2K [9], and the
single-view transductive SVM — CCCP TSVM [7]. To
simulate the sparsity of labeled data, we generated 100
random splits of the product review dataset. Each split
contains 20 labeled, 1580 unlabeled, and 400 validation
examples. We tuned the parameters for each algorithm
with respect to their accuracy on the validation dataset,
making use of their labels. For the supervised SVM and
SVM-2K, the models were trained with only 20 labeled
examples. For the semi-supervised CCCP TSVM and
Two-view TSVM, models were trained with 20 labeled
and 1580 unlabeled examples. For all algorithms, we
used the unlabeled data as the test set.

The average accuracy and its standard deviation for
each algorithm across the 100 dataset splits is shown in
Table 1. It can be seen from Table 1 that our Two-view
TSVM achieves the best accuracy compared to all other
methods. To assess the statistical significance of Two-
view TSVM result, we performed an unpaired t-test at
5% significance level with CCCP TSVM as reference.
The results shown in bold in Table 1 are considered to
be statistically significant.

To assess the importance of unlabeled data in
situations where labeled data are really sparse, we
evaluated the performances of CCCP TSVM versus
our Two-view TSVM for increasing amount of labeled
data starting from 20 up to 1000. Figure 4 gives
a plot of accuracy versus number of labeled data for
CCCP TSVM and Two-view TSVM. As expected, both
algorithms improve with increasing number of labeled
examples. The key thing to note here is that the
performance of the Two-view TSVM is around 5%
better than the best single view CCCP at the lowest
amount of labeled data. As the number of labeled
data increases, all two algorithms performed more or
less in the same ballpark. From the figure, we can
conclude that the Two-view TSVM shines when the
amount of labeled data is very small, but it also slightly
outperformed the single-view classifiers as the labeled
data increases. Therefore, it is safe to employ the Two-
view TSVM regardless of the amount of labeled data at
hand, as it always produces equal or better results than

the single view classifier.
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Figure 4: Accuracy versus the number of labeled data
examples for CCCP TSVM and Two-view TSVM on
the product review dataset.

4.2 WebKB Course Dataset. The WebKB course
dataset has been frequently used in the empirical study
of multi-view learning since it was first introduced by
Blum et al. [2]. The dataset contains 1051 web pages
collected from computer science departments of four
universities. The task is to classify each page into two
classes: course or non-course. The two views are the
textual content of a webpage (page view) and the words
that occur in the hyperlinks of other webpages pointing
to that webpage (link view). We borrowed a processed
WebKB course dataset from Sindhwani et al. [22] and
used it in our experiment.

The set of parameters (C and C∗) was chosen from
a small range of values automatically, and applied to
both the CCCP TSVM and Two-view TSVM. Both
algorithms were run over 100 random splits of the
WebKB course dataset. Each split contains 12 labeled
and 1039 unlabeled examples. Since the distribution
of WebKB course dataset is skewed (only 230 of 1051
examples belong to the positive class), we reported the
F1-measure besides accuracy. Note that it is always
harder for a classifier to achieve a good F1-measure
than accuracy on a skewed dataset. The mean and
standard deviation results of accuracy and F1-measure
on the unlabeled test examples are tallied in Table 2
and Table 3 for CCCP TSVM and Two-view TSVM,
respectively.

Compared to the CCCP TSVM, Two-view TSVM
achieves consistently higher accuracy and F1-measure
values. Specifically, performance for the positive class’s
F1-measure is more than 11% better (85.52% for Two-
view TSVM versus 73.76% for CCCP TSVM). Further,
the variation (standard deviation shown in brackets) in
all of the results for Two-view TSVM is on average four
to five times lower than that of the CCCP TSVM. For
example, the Two-view TSVM accuracy has a standard



Algorithm Lexical view Formal view Hybrid view
SVM (20 labels) 57.63 (18.98) 69.00 (12.10) -

SVM-2K (20 labels) 74.22 (5.24) 70.80 (4.76) 76.96 (4.77)
CCCP TSVM 76.30 (2.27) 74.39 (6.03) -

Two-view TSVM 79.17 (4.91) 74.60 (5.20) 80.43 (5.31)

Table 1: Product review detection results showing mean accuracy (in percentage) and its standard deviation (in
brackets). The “Hybrid view” classifier uses a linear combination of both classifier outputs.

View Accuracy Pos F1 Neg F1
Page 87.33 (9.04) 62.76 (33.50) 91.78 (7.07)
Link 90.65 (7.98) 73.76 (20.27) 93.85 (8.88)

Table 2: Average classification performance and stan-
dard deviation (in brackets) of CCCP TSVM on the
WebKB course dataset.

View Accuracy Pos F1 Neg F1
Page 88.36 (4.82) 78.59 (6.86) 91.97 (3.63)
Link 93.53 (2.46) 85.46 (5.60) 95.84 (1.59)

Hybrid 93.55 (2.46) 85.52 (5.59) 95.85 (1.59)

Table 3: Average classification performance and stan-
dard deviation (in brackets) of Two-view TSVM on the
WebKB course dataset.

deviation of 2.46, versus the standard deviation of 7.98
for CCCP TSVM accuracy. These results show that
the proposed Two-view TSVM performs not only more
accurately but also achieves considerably more stable
results than the regular CCCP TSVM approach.

Figure 5 depicts the detailed F1-measure results
of both positive and negative classes over 100 random
splits of the test dataset for both the CCCP TSVM and
Two-view TSVM algorithms. It can be seen that the
performance of CCCP TSVM is rather unstable, which
oscillates between zero and non-zero F1-measures. This
happens when the CCCP TSVM classifies every test
example into one class (despite the balancing constraint
of (3.4f) is also imposed).

On the contrary, by simultaneously training two
transductive SVMs based on two views, the two-view
TSVM successfully overcomes this problem. In fact,
the F1-measure for Two-view TSVM remains relatively
stable, regardless of changes in the training/test data.
Since the amount of labeled data in semi-supervised
learning is relatively small, there are always variations in
the small training set. The variability among training
examples is considered one of the primary sources of
errors in a classifier. By requiring two classifiers to
agree with each other, the chances for large variations in
the trained decision boundary can be reduced. Further,

the hybrid classifier output is a weighted sum of the
individual classifier outputs, which effectively reduces
the probability of large swings; any major disagreement
between the two view classifiers is essentially averaged
out after the linear combination.

5 Conclusion.

In this paper, we proposed a two-view transductive
SVM (Two-view TSVM) that is able to take advan-
tage of multipe views of unlabeled data to achieve an
improvement in classification performance for problems
lacking in labeled data. The Two-view TSVM is ac-
tually an extension of the existing two-view supervised
learning algorithm into a semi-supervised setting. In
particular, it was motivated by our need to detect spam
product reviews from online forums. Experimental re-
sults were promising on the review spam detection task:
a model trained with a few labeled data using our
algorithm is comparable to one trained on a signifi-
cantly larger amount of labeled data using the super-
vised learning approach. The task of product review
mining can be enhanced by applying our method to de-
tect and filter spam reviews. What’s more, for a general
text classification problem, our algorithm is more ac-
curate and stable compared to traditional transductive
SVM trained from data in a single view.

For future work, we plan to seek alternative ways
to represent the consensus between the two views and
examine the performance of our algorithm on more
datasets. Further, we are interested to derive the theo-
retical error bounds of our algorithm, and also study its
convergence properties and conditions as well as other
efficiency issues. Finally, we may also investigate some
state-of-the-art kernel learning techniques [11, 25, 12]
for optimizing the kernel functions in building more ef-
fective two-view TSVM models.
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(a) Variation of the positive class’s F1-measure (page view).
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(b) Variation of the positive class’s F1-measure (link view).
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(c) Variation of the negative class’s F1-measure (page view).
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Figure 5: Variation of the positive and negative classes’ F1-measure values over 100 dataset splits. This figure
shows CCCP TSVM and Two-view TSVM’s variation on the positive and negative classes’ F1-measures.

References

[1] D. P. Bertsekas, Constrained Optimization and La-
grange Multiplier Methods, Athena Scientific, 1996.

[2] A. Blum and T. Mitchell, Combining labeled and un-
labeled data with co-training, International Conference
on Learning Theory (COLT), 1998, pp. 92–100.

[3] O. Chapelle, V. Sindhwani, and S. S. Keerthi, Opti-
mization techniques for semi-supervised support vector
machines, Journal of Machine Learning Research, 9
(2008), pp. 203–233.

[4] O. Chapelle and A. Zien, Semi-supervised classification
by low density separation, In Proceedings of the 10th
International Workshop on Artificial Intelligence and
Statistics, 2005.

[5] O. Chapelle, M. Chi, and A. Zien, A continuation
method for semi-supervised SVMs, International Con-
ference on Machine Learning (ICML), 2006, pp. 185–
192.

[6] C. M. Christoudias, R. Urtasun, and T. Darrell, Multi-
view learning in the presence of view disagreement, In
Proceedings of the 24th Conference on Uncertainty in
Artificial Intelligence, 2008.

[7] R. Collobert, F. Sinz, J. Weston, and L. Bottou, Large
scale transductive SVMs, Journal of Machine Learning
Research, 7 (2006), pp. 1687–1712.

[8] K. Dave, S. Lawrence, and D. M. Pennock, Mining
the peanut gallery: opinion extraction and semantic
classification of product reviews, International World
Wide Web Conference (WWW), 2003, pp. 519–528.

[9] J. D. R. Farquhar, D. R. Hardoon, H. Meng, J. Shawe-
Taylor, and S. Szedmak, Two view learning: SVM-2K,
theory and practice, Advances in Neural Information
Processing Systems (NIPS), 2005.

[10] D. Hardoon, S. Szedmak, and J. Shawe-Taylor, Canon-
ical correlation analysis: An overview with application
to learning methods, Neural Computation, 16 (2004),
pp. 2639–2664.

[11] S.C.H. Hoi, M.R. Lyu, and E.Y. Chang, Learning
the unified kernel machines for classification, ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining (KDD), 2006, pp. 187–196.

[12] S.C.H. Hoi, R. Jin, and M.R. Lyu, Learning Non-
Parametric Kernel Matrices from Pairwise Con-
straints, International Conference on Machine Learn-
ing (ICML), 2007.

[13] N. Jindal and B. Liu, Review spam detection, Inter-
national World Wide Web Conference (WWW), 2007,
pp. 1189–1190.

[14] N. Jindal and B. Liu, Opinion spam and analysis,
ACM International Conference on Web Search and
Data Mining (WSDM), 2008, pp. 219–230.

[15] T. Joachims, Text Categorization with Suport Vector
Machines: Learning with Many Relevant Features, In-
ternational Conference on Machine Learning (ICML),
1998, pp. 137–142.

[16] T. Joachims, Transductive inference for text classifica-
tion using support vector Machines, International Con-
ference on Machine Learning (ICML), 1999, pp. 200–
209.

[17] S. Kim, P. Pantel, T. Chklovski and M. Pennacchiotti,
Automatically assessing review helpfulness, In Proceed-
ings of the Conference on Empirical Methods in Natu-
ral Language Processing, 2006, pp. 423–430.

[18] J. Liu, Y. Cao, C. Lin, Y. Huang and M. Zhou, Low-
quality product review detection in opinion summariza-
tion, In Proceedings of the Joint Conference on Empiri-



cal Methods in Natural Language Processing and Com-
putational Natural Language Learning, 2007, pp. 334–
342.

[19] B. Pang and L. Lee, Opinion mining and sentiment
analysis, Foundations and Trends in Information Re-
trieval 2(1-2), 2008, pp. 1–135.

[20] V. Sa, Learning classification with unlabeled data,
Advances in Neural Information Processing Systems
(NIPS), 1993.

[21] F. Sebastiani, Machine learning in automated text
categorization, ACM Computing Surveys, 34(1) (2002),
pp. 1–47.

[22] V. Sindhwani, P. Niyogi, and M. Belkin, Beyond
the point cloud: from transductive to semi-supervised
learning, International Conference on Machine Learn-
ing (ICML), 2005, pp. 824–831.

[23] V. Sindhwani, P. Niyogi, and M. Belkin, A co-
regularization approach to semi-supervised learning
with multiple views, In Proceedings of the 22nd ICML
Workshop on Learning with Multiple Views, 2005.

[24] V. Sindhwani and S. S. Keerthi, Large scale semi-
supervised linear SVMs, SIGIR, 2006, pp. 477–484.

[25] S. Sonnenburg, G. Rätsch, C. Schäfer, and
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