What Does Software Engineering Community Microblog About?

Yuan Tian, Palakorn Achananuparp, Ibrahim Nelman Lubis, David Lo, Ee-Peng Lim
Singapore Management University, Singapore
yuan.tian.2011@exchange.smu.edu.sg, palakorn@smu.edu.sg, lubisnelman@smu.edu.sg,
davidlo@smu.edu.sg, eplim@smu.edu.sg

Abstract—Microblogging is a new trend to communicate and to disseminate information. One microblog post could potentially reach millions of users. Millions of microblogs are generated on a daily basis on popular sites such as Twitter. The popularity of microblogging among programmers, software engineers, and software users has also led to their use of microblogs to communicate software engineering issues apart from using emails and other traditional communication channels. Understanding how millions of users use microblogs in software engineering related activities would shed light on ways we could leverage the fast evolving microblogging content to aid software development efforts. In this work, we perform a preliminary study on what software engineering community microblogs about. We analyze the content of microblogs from Twitter and categorize the types of microblogs that are posted. We investigate the relative popularity of each category of microblogs. We also investigate what kinds of microblogs that are diffused more widely in the Twitter network. Our experiments show that microblogs commonly contain job openings, news, questions and answers, or links to download new tools and code. We find that microblogs concerning the real-world events are more widely diffused in the Twitter network.

I. INTRODUCTION AND MOTIVATION

Microblogging as part of the recent advent of Web 2.0 has been a popular means to spread information. Millions of active users microblog every day generating massive content that can be publicly assessed. One well-known example of popular microblogs is Twitter. Because of its perceived informality and near real-time update, millions of users have flocked to Twitter to “tweet” or post a microblog about various subjects. This wealth of information provides opportunities to learn much knowledge from a large network of people.

Mining knowledge from microblogs has been one of the active research interest in various research areas [7], [14]. Recently, [5], [2] proposed the integration of microblogs with software development and development environments (IDEs). Despite this widespread usage of microblogs, and the interest in integrating social media in general and microblogging in particular with software development process, there has been no study so far that investigate the role of microblogging in software engineering community. We believe this study is important as the first step towards the development of techniques that harness the power of microblogs to support various software engineering activities, e.g., debugging, maintenance, collaboration, and many more.

In this preliminary study, we try to fill this gap by analyzing the content of a sample of microblogs extracted from Twitter. We consider three dimensions of software engineering: programming languages, libraries and systems, and software engineering methodologies. For each dimension, we investigate three popular hashtags\(^1\). We crawl Twitter to collect a set of Twitter messages, also known as tweets, using these hashtags. The content of the tweets along with links contained in these tweets are analyzed. We then categorize these microblogs into categories and investigate popular tweets based on whether they get propagated from one user to others through an act of sharing or forwarding a tweet called retweeting.

Our contributions are as follows:
1. To the best of our knowledge, this is the first study that performs an exploratory study on what software engineering community microblogs about.
2. We propose a categorization of software related tweets based on their contents.
3. We investigate the relative popularity of each category of tweets.
4. We investigate the diffusion of each category of tweets by examining whether they get retweeted by others (i.e., forwarded to other users to their networks).

In a related study, we build a system that plots topical (i.e., C# versus Java) and longitudinal (July versus Aug) trends of tweets [1]. In this study, different from the above mentioned study, we manually look into the content of the tweets, categorize them, and investigate which category of tweets get propagated.

The structure of this paper is as follows. In Section II, we present a brief preliminary introduction of Twitter. In Section III, we present our research questions and methodology. In Section IV, we present our experimental findings. Some closely related studies are presented in Section V. We conclude and describe future work in Section VI.

II. TWITTER

Twitter is the most popular microblogging site. As of 2011, it has approximately 200 million users\(^2\), generating

\(^1\)Hashtags are used in Twitter to tagged microblogs belonging to a particular topic.
\(^2\)http://www.bbc.co.uk/news/business-12889048
over 200 million tweets daily\(^3\).

Twitter allows each tweet to have a maximum length of 140 characters. To address the limit on the length of tweets, many authors also post additional content in a separate webpage and include an abbreviated version of the link to that webpage in the tweet. The separate webpage could be a blog, question answering site (e.g., StackOverflow.com), personal homepage, commercial page, etc.

Apart from the posting of new tweets, a user could also retweet an existing tweet. Twitter users form a network where a user could unilaterally follow other users. Microblogs from the followees are then passed to followers. By retweeting, a user can spread a read tweet to his or her followers. Retweeting is then a sign of interest. Interesting microblogs would be retweeted many times and spread to many users in the Twitter network. Retweets are generally designated by the “RT” keyword. It is also possible to reply to a particular tweet. A replied tweet generally contains “@ (User)” to identify the user the tweet is intended for.

III. Research Methodology

In this section we describe our research questions, data collection effort, and data analysis strategy.

Research Questions. Our study aims to understand microblogging behaviors of software engineering community. In particular, we would like to investigate the following research questions:

1. What are some categories of contents that software engineering community microblogs about?
2. What are the relative popularity of the different categories of software related microblogs?
3. What categories of tweets often cause further interest and are propagated widely in the network?

To answer the above research questions we collect tweets from Twitter and perform manually analysis as described in the following paragraphs.

Data Collection. To start with our analysis we need to first define a subset of microblogs in Twitter that we are interested in. We then need to define a smaller subset that we can analyze in this preliminary study.

We are interested in software engineering community and how they use microblogs. Software engineering community is a rather loosely defined concept. In this study, we define software engineering community to be people who microblog about software engineering topics. We sub-divide software engineering into sub-areas, and focus on three of them: programming languages, library and systems, and methodologies. We believe these sub-areas are popular and important for typical software developers. There are many topics related to these subareas. In this preliminary study, we just pick three topics per area.

The list of topics per sub-area is given in Figure I. For programming languages, we pick the two most popular programming languages: C# and Java. We also pick JavaScript, a scripting language popularly used for web development. For libraries and systems, we pick two libraries related to C# and Java\(^4\). We also pick a recent cloud-based system released by Microsoft, namely Windows Azure Platform. For methodologies, we pick three popular topics related to software development, testing, and distribution\(^5\).

We used Twitter Streaming API to collect tweets that contains the hashtags. The API gives the most recent tweets randomly sampled from all the tweets containing the hashtags. We also compute the retweet count of each tweet; we monitored this daily up to 3 days after the tweet is posted. In general, if tweets ever get retweeted, it would be done within 24 hours [7]. Up to the 30th November 2011, we have collected 19,114 tweets.

Analysis. We then perform manual analysis to investigate the content of the tweets. After the analysis of a number of tweets, we come out with 10 categories of tweets as shown in Figure II. For libraries and systems, we pick two libraries related to C# and Java\(^5\). For methodologies, we pick three popular topics related to software development, testing, and distribution\(^5\). We do not pick JDK as microblogs related to JDK would also be related to Java, while.Net covers more than C#.

The categories captures all kinds of tweets due to the special bucket “miscellaneous & unclear” to capture uncommon tweets, out-of-scope tweets, and unclear tweets.

Next, we pick a sample of tweets belonging to any one

\(^3\)http://blog.twitter.com/2011/08/your-world-more-connected.html

\(^4\)We do not pick JDK as microblogs related to JDK would also be related to Java, while .Net covers more than C#.

\(^5\)We do not use development and distribution as topics as they are often used to identify other topics not related to software development too, e.g., economic development, food distribution channels, etc.
of the topics shown in Figure I. To identify tweets that belong to a particular topic, we make use of hashtags. Not all tweets related to a particular topic are tagged though. Thus we might lose some data, however, since our goal is to extract a sample of “clean” tweets, i.e., they are not out-of-topic, we use hashtags to identify relevant tweets. The mapping of topics to hashtags are as follows: C# ➔ #csharp, Java ➔ #java, Javascript ➔ #javascript, Net ➔ #dotnet, JQuery ➔ #jquery, Azure ➔ #azure, Scrum ➔ #scrum, Testing ➔ #testing, Open source ➔ #opensource. In this preliminary study, we pick a sample of 300 tweets for a manual analysis. We ignore tweets that are not written in English since English is the main language used among users interested in software engineering topics. We also ignore retweets as they do not contain new content – replies contain new content though and thus we include them.

We ask three individuals to label the tweets into one of the ten categories. After a short initial discussion on what the categories meant, the three individuals label all the sample microblogs independently. At the end of the process, discrepancies among the category labels are identified. Discrepancies among the labels are resolved by a discussion where at least two out of the three individuals need to agree on each of the final category label. During the labeling process, we ask the labelers to investigate not only the content of the tweet (which is rather short) but also the links to any external website that are mentioned with the tweet. At times a microblog could belong to more than one category; for these cases, we ask the labelers to simply identify the closest category. After the microblogs are labeled, we group them into their separate categories and simply compute their basic statistics.

We also track whether each of the 300 analyzed tweets are retweeted. Tweets that are retweeted are spread more widely in the Twitter network. We use Twitter API to obtain the 300 sample tweets and to track if they are retweeted.

We also track whether each of the 300 analyzed tweets are retweeted. Tweets that are retweeted are spread more widely in the Twitter network. We use Twitter API to obtain the 300 sample tweets and to track if they are retweeted.

IV. PRELIMINARY FINDINGS

In this section, we describe our findings that answer the three research questions posted in Section III. We also present some threats to validity.

A. RQ1: What are the common categories of software related microblogs?

To answer this question, we investigate the proportion of tweets that could be classified into one of the 9 categories (Category 1 to 9). Table II shows the distribution of tweets among the categories. We found that 282 tweets (94% of all the tweets that we analyzed) belong to category 1 to 9. This means that our proposed categories could capture most of the tweets.

Out of the 18 tweets that belong to “Miscellaneous and unclear”, two of them are unclear (they could not be understood from the text alone). One of them is shown below:

Test Entry Criteria - A finalized Requirements document is available (if you don’t have requirements
what did you develop to) #testing

Nine of the tweets are off topics; three of them are about entertainment (cricket, a YouTube video on Lady Gaga, and a joke), the others are about: anti-matter, hotel, water, book, etc. An example is shown below:

You Love Me ? #Testing 1, 2, 3

Some other could potentially be other categories but they are rather infrequent compared to the others. Three are announcements of a server being down for a period of time. Others only appear once in the tweet pool that we analyze; they are about call for paper, feature request, etc.

B. RQ2: What are the relative popularity of the different categories of software related microblogs?

The distribution of the tweets into the 10 categories are shown in Table III. From the table we could note that tweets containing job openings are the most popular. Next, are tweets containing news and those containing questions (either direct questions or those posted in Q&A sites). Tweets sharing open source tools and code are also common.

Interestingly they are substantially many tweets sharing tips on how to perform various tasks – as the tweets are short, many of these tips are on the accompanying website referred to by the tweets. Personal tweets are also many – a number of Twitter user use tweets to send messages among friends or to just ramble about their daily software engineering related activities (e.g., “Yay! Bubble sorting is finally working. #Java: I love you sometimes!”). Next in the list are tweets containing opinions which are typically linked to the authors’ blogs. The least popular use of software related tweets are commercial and events.

C. RQ3: What categories of tweets often cause further interest and are propagated widely in the network?

We investigate a proportion of tweets that are retweeted per category. The result is shown in Figure IV. We notice that the tweets containing event information are most likely to be retweeted as they contain more “emergent” features that encourage people to spread the message.
(e.g., "RT @Sourcefabric: 3 hours left to vote for Superdesk in Ashoka Changemakers Global Innovation Contest. http://t.co/HMpt0vMg"). Promotion tweets also have a high retweet proportion (more than 40%). Next are personal tweets, followed by opinions and tips (9-12%). News or report tweets that are retweeted by people interested in related topics have about 7% retweet proportion. Job-related tweets are less likely to be spread, having 4% retweet proportion, although they are quite popular in terms of sheer tweet volume. The least widely shared tweets in the list are those raising questions or sharing particular tools or code snippets for their lack of general useful information. We also notice that the miscellaneous and unclear tweets are never re-tweeted (0%).

D. Threats to Validity

In this exploratory study, we have threats to internal and external validity. Threats of internal validity include bias in our experimental study. We have tried to reduce this bias by asking three individuals to label all the tweets; consensus of the majority is used to resolve differences. Threats of external validity refers to the generalizability of our findings. In this preliminary study we have only analyzed 300 tweets; in the future, we plan to reduce this threat of external validity by examining more tweets.

V. RELATED WORK

Social Media for Software Development. There have been a couple of studies that integrate social media with software development processes and IDEs. These include studies by Guzzi et al., Begel et al., and Treude and Storey [5], [2], [13]. In this study, we do an orthogonal study to analyze what does software engineering community microblogs about in Twitter. Pagano and Maalej investigate how software developer blogs [8]. In this study, we investigate microblogging activity in Twitter. Treude et al. manually analyze a few hundreds question and answer posts in StackOverflow.com to categorize questions developer ask [12]. Gottipati et al. build a semantic search engine to search software Q&A forums more effectively [4].

General Study on Twitter. Research in social computing has studied data generated by Twitter users from various aspects. Notably, Sakaki et al. introduced the work utilizing tweets as social sensors for detecting earthquakes and other natural disasters [9]. Also, Kwak et al. presented a large scale study of global Twitter data focusing on the way in which information diffused through a vast network of users [7].

Social Network Analysis in Software Engineering. Bird et al. investigate how social networks formed by developers email communications [3]. Surian et al. and Hong et al. investigate developers socio-technical network in SourceForge.Net [11], [6]. Surian et al. also build a recommender system to find compatible developers in their socio-technical network [10]. In this study, we focus on a particular kind of social network namely microblogging network in Twitter.

VI. CONCLUSION AND FUTURE WORK

In this work, we analyze what software engineering community microblogs about in Twitter and categorize these microblogs into 10 categories. We analyze the relative popularity of each category via a user-assisted study. We also analyze the types of tweets that evoke more interest and are more diffused through retweeting actions in the Twitter network. We find that the most popular categories of tweets are those related to job openings, news, Q&A, and new tools and code. We also find that the most widely propagated or shared tweet categories are events and commercials.

In the future, we plan to add the number of tweets that we analyze in this preliminary study. We also plan to build a machine learning solution that could automatically assign topic labels to tweets. We also plan to build an automatic tool to summarize various software related tweets. Building a question and answer search engine that can find answers from tweets is also an interesting research direction.

REFERENCES

<table>
<thead>
<tr>
<th>Category</th>
<th># retweets</th>
<th>% retweets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial</td>
<td>4</td>
<td>40.00%</td>
</tr>
<tr>
<td>News</td>
<td>3</td>
<td>6.82%</td>
</tr>
<tr>
<td>Tools & Code</td>
<td>0</td>
<td>0.00%</td>
</tr>
<tr>
<td>Q&A</td>
<td>2</td>
<td>4.55%</td>
</tr>
<tr>
<td>Events</td>
<td>6</td>
<td>54.55%</td>
</tr>
<tr>
<td>Personal</td>
<td>4</td>
<td>12.50%</td>
</tr>
<tr>
<td>Opinion</td>
<td>2</td>
<td>9.52%</td>
</tr>
<tr>
<td>Tips</td>
<td>3</td>
<td>9.09%</td>
</tr>
<tr>
<td>Job</td>
<td>2</td>
<td>4.17%</td>
</tr>
<tr>
<td>Misc</td>
<td>0</td>
<td>0.00%</td>
</tr>
</tbody>
</table>